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Abstract This paper proposes a more reasonable objective

function for combined economic emission dispatch prob-

lem. To solve it, Lagrange programming neural network

(LPNN) is utilized to obtain optimal scheduling of a hybrid

microgrid, which includes power generation resources,

variable demands and energy storage system for energy

storing and supplying. Combining variable neurons with

Lagrange neurons, the LPNN aims to minimize the cost

function and maximize the power generated by the

renewable sources. The asymptotic stability condition of

the neurodynamic model is analyzed, and simulation

results show that optimal power of each component with

certain time interval can be obtained. In addition, a new

method by radial basis function neural network is proposed

to predict the power values of renewable energy and load

demand, which are used as the input values in the optimal

process.

Keywords Hybrid microgrid � RBF neural network

prediction � Quadratic optimization � Lagrange

programming neural network � Renewable energy sources

1 Introduction

Quadratic programming (QP) problems appear from many

practical applications such as portfolio, least squares esti-

mation (LSE) and sequential quadratic programming

(SQP). Apart from its wide applicability, from a method-

ological point of view, quadratic programming is also

interesting because certain nonlinear optimization prob-

lems are based on it. Also, solving the quadratic problem in

real time is necessary in practical application [1–3].

Recent years, researchers have put a lot of energy on

optimization problems in MG [4–17]. Urias et al. [18]

presented a recurrent neural network (RNN) for linear

programming and applied it to obtain optimal solution of a

microgrid. The day-ahead dispatch of isolated power sys-

tems including battery system was revealed under a new

control strategy in [19]. In [20], Umeozor et al. presented a

parametric programming-based approach for energy man-

agement in MGs. Yang et al. [21] investigated a discrete-

time neural network for solving convex QP problems in

constrained model predictive control technology and

implemented on a digital signal processor device. Equipped

with energy storage system and nature resources in MGs,

demand response and thermal optimization are supported

by a monitoring strategy. With a focus on the dispatch

problem of smart appliances, Li et al. [22] investigated the

sparse load shifting in demand-side by a distributed algo-

rithm introduced.

Over the years, solving constrained optimization prob-

lems using neural network was in deep research. Com-

bining back propagation neural network (BPNN) with

traditional genetic algorithm (GA), Huang et al. [23] pro-

posed a new optimization method. Matallanas et al. [24]

implemented a scheduler and a coordinator by neural net-

works in a distributed control system. In [25], Wang
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discussed a combined adaptive neural network control and

nonlinear model predictive control approach for a class of

multi-rate networked nonlinear systems with double-layer

architecture. In [26], Patel designed a quantum-based

neural network classifier as a firewall to detect malicious

Web requests on the Web. Zhang et al. [27] developed a

class of neural networks for solving the general nonlinear

programming problem; this approach is based on the

famous Lagrange multiplier theory, by a modified con-

straint into the objective function to deal with constraints.

This method reduces the difficulty of calculation.

The electrical MG under study is shown in Fig. 1. The

MG is a low-voltage power system integrated with differ-

ent power generation resources (PGRs), energy storage

system (ESS) and variable demands (VDs), which can be

operated by the control center. PGRs include renewable

generation resources (RGRs) and conventional generation

resources (CGRs). The RGRs consist of wind turbines

(WTs) and photovoltaics (PVs), and CGRs involve diesel

generators (DGs), fuel cells (FCs) and microturbines

(MTs). The ESS mainly refers to batteries with rapid

charge–discharge. Heating equipment, air conditioning and

ventilation in VDs can be served to balance supply and

demand. A power management strategy (PMS) is required

in MG to minimize the cost function under certain opera-

tional constraints by controlling the power flows between

each system unit.

In this paper, the LPNN is introduced to obtain the

optimal scheduling and minimize the cost function in a

hybrid MG. Variable neurons and Lagrange neurons in the

network are used to determine the optimal solution as well

as the solution at equilibrium point and keep the neurons

moving in the feasible region during the iteration process.

Our contributions include the following four aspects: (1)

We obtain the LPNN solution for optimal operating strat-

egy and the asymptotic stability condition of the neuro-

dynamic model is also analyzed. Combining variable

neurons with Lagrange neurons, the LPNN aims to mini-

mize the cost function and maximize the energy generated

by WTs and PVs. (2) RBFNN, whose input vector is a set

of sequences with certain time interval, is first applied to

obtain the predicted values of wind speed (WS), solar

radiation (SR) and load demand with smaller MSE and

ARE, showing good performance. (3) By defining price to

control emissions and integrating the emission cost with

the fuel cost function, an objective function with full

consideration is proposed for the MG system.

The remainder of this paper is organized as follows. The

system description is given in Sect. 2. In Sect. 3, the CEED

problem is stated. By RBFNN, the process of RGRs and

VDs prediction is presented in Sect. 4. In Sect. 5, we

introduce the LPNN and investigate the asymptotic sta-

bility of the proposed algorithm. Next, optimization solu-

tions are obtained and the simulation results are shown in

Sect. 6. Finally, Sect. 7 concludes this paper.

2 System description

The MG is a low-voltage power system integrated with

different PGRs, ESS and VDs, which can be operated with

the control center.

Diesel GenerationMicroTurbine

Fuel CellBattary Bank

MicroGrid 
Control Center

PV Module

Electrical Bus

Control Signal

User User

Fig. 1 MG architecture
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2.1 Power generation resources

Distributed generation units inside the MG control area

have the microsources (MS) consisting of CGRs (DG, MT

and FC) and RGRs (WT, PV).

1. Diesel generator The fuel cost function of a DG

system is denoted by a quadratic polynomial with

regard to the output power of generator [28]:

C1 PDG tð Þð Þ ¼ aDG þ bDGPDG tð Þ þ cDGP
2
DG tð Þ ð1Þ

where aDG; bDG; cDG are the positive parameters of

DGs, PDG is the generator power of the DGs and C1 is

the fuel cost of DGs.

2. Fuel cell In previous work [29], the cost of FCs was

adopted as a one-order function with regard to its

power output. In our work, a more reasonable equation

is considered. The fuel cost of the FCs is calculated as:

C2 PFC tð Þð Þ ¼ aFC þ bFCPFC tð Þ þ cFCP
2
FC tð Þ ð2Þ

where aFC; bFC; cFC are the cost coefficients of the FCs,

PFC is the power generation of the FCs and C2 is the

fuel cost of FCs.

3. Microturbine The expression of MT is analogous to the

FC and the difference between them is that the

efficiency of the MT has positive correlation with the

power generation [29, 30]. The fuel cost function of a

MT system is expressed by the quadratic function (3)

C3 PMT tð Þð Þ ¼ aMT þ bMTPMT tð Þ þ cMTP
2
MT tð Þ ð3Þ

where aMT; bMT; cMT are the parameters of the MTs,

PMT is the generator power of the MT and C3 is the

fuel cost of MTs.

4. Wind energy system The power generation of the WT

unit can be described as a cubic polynomial with

regard to the wind speed at the monitoring station (4):

PWT ¼ 1

2
qpR2v3CP ð4Þ

where PWT is the power generation of the system, q is

the air density of the monitoring area, R is the radius of

the paddle of wind turbines, v is the wind speed of

power generation area and Cp is conversion efficiency

of the wind power.

5. Solar energy system The generation power of PV

system with regard to solar radiation can be denoted by

(5)

PPV ¼ PSTC

GING

GSTC

1 þ k TC � Tc
� �� �

ð5Þ

where PPV is the power generation of the system, GING

is incident irradiance, PSTC is maximum power at

standard test condition, GSTC is irradiance at standard

test condition, k is the temperature coefficient, TC is

the module temperature and Tc is the reference

temperature.

2.2 Battery storage

The power from battery storage (BS) system is needed

when the supply from MS cannot meet the VDs. On the

other hand, battery bank will store the energy for later use

when the supply exceeds load demand. Figure 2 shows the

charge and discharge process of the battery storage system,

where state of charge (SOC) is used to quantify the level of

discharge of the battery as follows [31]:

state of charge SOC ¼ 1 � Qe=C 0; hð Þ ð6Þ

in which

Extracted charge Qe tð Þ ¼
Z t

0

�Im sð Þds ð7Þ

Battery capacity C I; hð Þ ¼ C0 0ð Þ 1 þ h
�hf

� �e

h[ hfð Þ

ð8Þ

Therefore

C 0; hð Þ ¼ C I; hð ÞI¼0

¼ C0 0ð Þ 1 þ h
�hf

� �e

h[ hfð Þ

¼ KcC0� 1 þ h
�hf

� �e

ð9Þ

where C0 Ið Þ is the battery capacity at 0 �C, Kc is a constant

in lead-acid battery system, C0� is the load-free capacity

when the temperature is zero, hf is the electrolyte freezing

temperature, h is the electrolyte temperature, Im is the

extracted current, e is a constant parameter.

Fig. 2 Lead-acid battery SOC
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By means of Eq. (6), we can easily calculate

SOC;C 0; hð Þ or Qe. During the optimal process, the output

power of the battery PBAT satisfies the bound constraints

(10):

PBATmin �PBAT �PBATmax; t ¼ 1; 2; . . .; T ð10Þ

3 Variable demands

There are four kinds of demands in our MG, including

critical demand, controllable demand, sensitive to price

demand and thermal demand [30].

1. Critical demand (PDcr) Loads in some basic processes

that must be satisfied from day to night.

2. Controllable demand (PDco) Loads that have preferred

level and flexible magnitude.

3. Price-sensitive demand (PDps) Loads whose magnitude

rely on energy price and regard a price as margin price.

4. Thermal Demand (PDth) The thermal load supplied by

boiler and the recovered heat generated by MTs.

In this way, the total load demand satisfies Eq. (11):

PD ¼ PDcr þ PDco þ PDps þ PDth ð11Þ

4 Problem statement

The CEED is one of important optimization problems in

MG system, and it aims to minimize the total cost while

satisfying some equality and inequality constrains. A single

objective function, which combines the power generation

cost with the emission-control cost, can be obtained to

perform CEED. Hence, this problem can be regarded to

minimize of the mixed function.

4.1 Objective function

In the MG system mentioned above, the total cost mainly

includes four aspects: fuel cost, operating and maintenance

cost, start-up cost and emission-control cost. The proposed

objective function (12) of the MG system is on the basis of

minimizing the cost of the next day [32].

minCFMG ¼ F Pið Þ þ qE Pið Þ

¼
XN

i¼1

CiFi þ OMi þ SCið Þ þ
XN

i¼1

qiEmi

ð12Þ

where Pi is the power of the ith generating units and

1th; 2th; 3th denote DG, FC and MT, respectively, F Pið Þ
the power generation cost of the ith generator, Ci the fuel

cost of the ith generator, Fi the fuel consumption rate of the

ith generator, OMi the operation and maintenance cost of

ith generator, SCi the start-up cost of the ith generator, Emi

the total emission of the contaminants, qi the price assigned

to emissions which represents the harmfulness of the

emissions, N the number of generating units, which equals

to three.

Equation (13) indicates that OMi has positive correla-

tion with the output power.

OMi ¼ KOM�iPi ð13Þ

where Pi is the power generation by DGs, MTs or FCs;

KOM is the proportion coefficient.

The start-up cost depends on the time the unit has been

off before it is started up once again [33]:

SCi ¼ ri þ di 1 � exp
�Toff;i

si

� �� �
ð14Þ

where ri is the hot start-up cost, di is the cold start-up cost,

si is the cooling time and Toff;i is the time a unit has been

off.

Many researchers used second-order polynomial func-

tions to express the total emission of the pollutants [34]:

Em;i ¼ am;i þ bm;iPi þ cm;iP
2
i ð15Þ

4.2 Objective constraints

1. Equality constraints All the power generated by gen-

erators and battery must be equal to the load demand.

Hence, the equality constraint is

PDG þ PMT þ PFC þ PPV þ PWT þ PBAT ¼ PD ð16Þ

2. Inequality constraints To carry out normal operation,

output power of each power generation unit must work

between the lower and upper limit; therefore, the

inequality constraint is

PDGmin �PDG �PDGmax

PFCmin �PFC �PFCmax

PMTmin �PMT �PMTmax

0�PWT �PWTmax

0�PPV �PPVmax

ð17Þ

where PDGmin is the minimum power generated by DG

and PDGmax is the maximum power generated by DG.

PFCmin is the minimum power generated by FC and

PFCmax is the maximum power generated by FC.

PMTmin is the minimum power generated by MT and

PMTmax is the maximum power generated by MT.

PBATmin is the minimum charge power of the battery

bank and PBATmax is the maximum discharge power of

battery bank. PWTmax and PPVmax are the maximum

power generated by WT and PV, respectively. It
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should be emphasized that PWTmax and PPVmax are

obtained by the prediction process in next section.

5 Radial basis function neural network
for prediction process

The values of WS, SR and VDs for the next intervals are

obtained in the prediction process. RBFNN in [35, 36],

which can predict a set of sequences, is applied in the

process. The RBFNN introduces the Gaussian functions in

its architecture. As is shown in Fig. 3, the architecture is

composed of an input layer, a hidden layer and an output

layer, and the hidden layer is constructed using the Gaus-

sian functions.

The RBFNN is a feedback network with two layers,

whose input vector is a set of sequences with certain time

intervals. The hidden layer corresponds to a set of radial

basis functions, and the output of each hidden unit is as

follows

ok ¼ f x� lkð Þ ¼ exp � x� lkk k
2r2

k

� 	
ð18Þ

where lk is the mathematical expectation of Gaussian

distribution and rk the width of Gaussian distribution to

control the distribution around the center.

The output of the jth output unit is:

yj ¼
XN

i¼0

wioi ¼
XN

k¼0

f x� lkð Þ ¼
XN

k¼0

wk exp � x� lkk k
2r2

k

� 	

ð19Þ

The RBFNN model is trained off-line and adopts a

parallel mode. The output power data of the WTs, PVs and

VDs are taken as the delayed output. The mean square

error (MSE) is applied to judge when the training process

stops. MSE is required to be less than 8:5 � 10�4 at the end

of training. First, the raw data sequence is used to generate

four training sequences with an interval delay, respectively.

Then, the input layer receives the training sequences and

the output layer receives the raw data sequence. Set

expansion speed to be 1 and goal error be 8.5e-004; the

prediction results can be obtained by the MATLAB tools

‘‘newrb.’’ Figures 4, 5 and 6 show three different evolution

curves of MSE during learning stage, in which the black

line represents the goal MSE. Table 1 shows the iterations,

MSE and SSE of the prediction series.

To measure the performance, ARE is calculated as [37]:

ARE ¼ y nð Þ � ŷ nð Þ
y nð Þ











 ð20Þ

where ŷ nð Þ is the time series predicted by the RBFNN. y nð Þ
is the input vector of the neural network model. As is

shown in Figs. 7, 8 and 9, the prediction values of the

second day are obtained by training the RBFNN using the

samples of first day. The RBF neural network achieves

day-ahead forecast by learning the potential characteristics

of historical data. Comparing with the latest research [38],

it is easy to find the prediction model can obtain the overall

trend and fail to predict precisely. The large errors are

relative and from Figs. 7, 8 and 9, we can know the large

errors exist in different points in wind, solar and load

demand prediction.

6 Lagrange neural network for quadratic
programming

In this part, the solution for operating strategy in MG is first

obtained and the asymptotic stability condition of the

neurodynamic model with two kinds of neurons is

analyzed.

i j

Fig. 3 Frame of RBFNN
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6.1 LPNN approach

To deal with the problem with equality and inequality

constraints of (16) and (17), we apply the LPNN approach

proposed in [27]. The LPNN approach, which is on the

basis of Lagrange multiplier method [39], constructs a

Lagrange function and introduces variable neurons and

Lagrange neurons. In the optimal process of the neurody-

namic model, variable neurons P and y decrease the

Lagrangian function while Lagrange neurons keep the

variable neurons moving in the feasible region and hold

Lagrange multiplier k and l contacting constraints function

with the objective function. The transient behavior of two

kinds of neurons is described as follows:

dP

dt
¼ � oL P; y; k; lð Þ

oP
ð21Þ

dy

dt
¼ � oL P; y; k; lð Þ

oy
ð22Þ

dk
dt

¼ oL P; y; k; lð Þ
ok

ð23Þ

dl
dt

¼ oL P; y; k; lð Þ
ol

ð24Þ

Fig. 4 MSE in the training process of wind power

Fig. 5 MSE in the training process of solar power

Fig. 6 MSE in the training process of load demand

Fig. 7 Contrast curve of real and predicted wind power

Table 1 The iterations, MSE and SSE of the prediction series

Prediction series Iterations MSE SSE

Wind power 65 8.2643e-004 0.0793

Solar power 43 7.3408e-004 0.0705

Load demand 54 7.6546e-004 0.0735

2640 Neural Comput & Applic (2019) 31:2635–2647
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where k 2 Rm; l 2 Rr are the Lagrange multipliers and t is

the time variable. The LPNN realization is shown in

Fig. 10.

6.2 LPNN solution

The proposed objective function can be summarized as a

QP problem with equality and inequality constraints as

shown in (25)–(27).

CF � const ¼ 1

2
PTQPþ CTP ð25Þ

subject to

H ¼ A� P� PD ¼ 0 ð26Þ

G Pð Þ ¼

PDG PDGmax

..

. ..
.

PBAT PBATmax

PDGmin PDG

..

. ..
.

PBATmin PBAT

0

BBBBBBB@

1

CCCCCCCA

� 1

�1

� �
� 012�1 ð27Þ

where

P ¼ PDG;PFC;PMT;PWT;PPV;PBATð ÞT ð28Þ
A ¼ 1 1 1 1 1 1ð Þ ð29Þ

const ¼
XN

i¼1

di þ aiqþ SCið Þ ð30Þ

Q ¼ A1 03�3

03�3 03�3

� �
; C ¼ A2

03�1

� �
ð31Þ

in which

A1 ¼
f1 þ r1q 0 0

0 f2 þ r2q 0

0 0 f3 þ r3q

0

@

1

A;

A2 ¼
e1 þ KOM�1 þ b1q
e2 þ KOM�2 þ b2q
e3 þ KOM�3 þ b3q

0

@

1

A

ð32Þ

Based on (25), the Lagrange function can be summa-

rized as follows:

L P; y; k; lð Þ ¼ 1

2
PT �Q � Pþ CT � Pþ k A � P� PDð Þ

þ
Xr

j¼1

lj � Gj Pj

� �
þ y2

j

� �

ð33Þ

The transient behaviors of the neurons are calculated as:

Fig. 8 Contrast curve of real and predicted solar power

Fig. 9 Contrast curve of real and predicted load demand power

Fig. 10 Lagrange programming neural network

Neural Comput & Applic (2019) 31:2635–2647 2641
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dP

dt
¼ � oL P; y; k; lð Þ

oP

¼�Q� P� C� k� AT

�
Xr

j¼1

lj � rPj
Gj Pj

� �
ð34Þ

dy

dt
¼ � oL P; y; k; lð Þ

oy

¼�
Xr

j¼1

2ljyj
ð35Þ

dk
dt

¼ oL P; y; k; lð Þ
ok

¼ AP� PDð Þ
ð36Þ

dl
dt

¼ oL P; y; k; lð Þ
ol

¼
Xr

j¼1

Gj Pj

� �
þ y2

j

� � ð37Þ

6.3 Stability analysis

The basic theory [27] of the LPNN is to make certain that

the equilibrium point of the neural network is always a

Kuhn–Tucker point of the proposed problem, and the

Lagrange solution is an asymptotically stable point of the

network. The equilibrium point is expressed as

P�; y�; k�; l�ð Þ and the following matrices are first set:

P ¼ PT ; yT
� �T

; k ¼ k; lT
� �T ð38Þ

H P; yð Þ ¼ H P; yð ÞT ;G P; yð ÞT
� �T ð39Þ

To guarantee the local stability, the gradient of con-

straint vectors G Pð Þ with respect to P at equilibrium point

P�; y�; k�; l�ð Þ should be linearly independent.

Lemma 1 At the equilibrium point P�; y�; k�; l�ð Þ of

(34)–(37), the gradients of constraint vectors (27) with

respect to P ¼ PT ; yT
� �T

are linearly independent.

Proof

rPGj P
�; y�ð Þ ¼

rGj P
�ð Þ

0

..

.

0

2y�j
0

..

.

0

2

666666666664

3

777777777775

j ¼ 1; . . .; r ð40Þ

rPH P�; y�ð Þ ¼ rH P�ð Þ
0

� �
¼ AT

0

� �
ð41Þ

The gradients above can be easily verified to be linearly

independent. Then, P�; y�ð Þ is a regular point. Based on the

conclusion got from Lemma 1, [27] has ensured that

P�; y�; k�; l�ð Þ is always a Kuhn–Tucker point. Therefore,

the following lemma is to ensure that all equilibrium point

correspond to a stable system.

Lemma 2 Let P�; y�; k�; l�ð Þ be a stationary point of

Lagrange function L P; y; k;lð Þ such that

r2
PPL P�; y�; k�; l�ð Þ[ 0. If P� is a regular point and sat-

isfies the strict complementarity condition. Then

P�; y�; k�; l�ð Þ is an asymptotically stable point of (34)–

(37).

Proof

dP

dt
dk
dt

2

664

3

775 ¼ �G� � P� P
�

k� k
�

� �
¼� B� C�

D� 0

� �
� P� P

�

k� k
�

� �

ð42Þ

where

B� ¼ r2
PP
L P�; y�; k�; l�ð Þ ð43Þ

C� ¼ rPH P�; y�ð Þ ð44Þ

D� ¼ �C�T ð45Þ

Additionally, we have

rPH P�; y�ð Þ ¼ rHj P
�ð Þ

0

� �
¼ AT

0

� �
ð46Þ

r2
PP
L P�; y�; k�; l�ð Þ ¼

r2
xxL P�; y�; k�; l�ð Þ 0 0 0

0 2l�k1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 2l�kJ

2

6664

3

7775

ð47Þ

where

r2
PPL P�; y�; k�; l�ð Þ

¼ Q� þ
Xm

j¼1

ljr2
PPGj Pj

� �

¼ Q�

ð48Þ

The positivity of matrix G� depends on the positivity of

matrix r2
PPL P�; y�; k�; l�ð Þ ¼ Q�; G� is strictly positive

definite from the strictly complementarity condition as well

as the strict positivity of r2
PPL P�; y�; k�; l�ð Þ. Hence �G�

is strictly negative definite and the point P�; y�; k�; l�ð Þ is

asymptotically stable.

2642 Neural Comput & Applic (2019) 31:2635–2647
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7 Simulation results

7.1 The results of LPNN approach

As is known to us all, many optimization problems exist in

MG system including optimal power dispatching, real-time

price optimization and so on. In this paper, LPNN is

applied to deal with the optimization problem of PMS in a

MG system. In Sect. 3, we introduce a single objective

function, which aims to minimize the total cost and max-

imize the power generated by RGRs, including wind and

solar energy. In this section, we conduct MATLAB simu-

lation to obtain the optimal solutions of the proposed

CEED problem using the LPNN idea. RGRs, VDs and the

SOC of battery banks should be known before solving the

CEED problem. Also, the generation restrictions of DG,

MT, FC and BA should be known as well. The following

three characteristics are the main items that should be

mentioned:

1. Considered that WT and PV product power without the

emission-control cost, so the power generation of them

is regarded as a negative load.

2. The SOC of the battery bank is monitored and the

battery works in charge state to provide energy when

the RGRs is not enough to serve the VDs.

3. Through the objective functions, we can easily choose

the sources from DG, MT and FC to serve the load.

In this part, simulation results based on LPNN approach

are presented. The first-day samples of RGRs and VDs are

used to adjust the parameters of RBFNN, and the second-

day samples are used to test the effect of prediction. The

predicted data of the second day in Figs. 7 and 8 are served

as the upper limit of RGRs in optimal process, respectively.

Figure 11 shows the VDs of the second day. To obtain the

optimal solutions of the LPNN, the values of generation

limits are set as:

PDGmin ¼ 0 kW PDGmax ¼ 14 kW

PMTmin ¼ 0 kW PMTmax ¼ 8 kW

PFCmin ¼ 0 kW PFCmax ¼ 8 kW

ð49Þ

Also, Table 2 shows the values of the parameters in

Eq. (1)–(3) and the proportional constant in Eq. (13). As is

shown in Fig. 2, the battery banks are charged at 80% in

initial condition. The meaning of SCB is described in

‘‘Appendix,’’ and for SCB = 2, Figs. 12, 13 and 14 show

the optimal results of all system modules.

Figure 12 describes the optimal power of RGRs. The

optimal power of WT system is calculated by the LPNN.

As is mentioned before, predicted power of WT is the

upper limit that the WT system can generate in the

optimal process, which relies on the WS in the location

for monitoring. The lower limit of WT generation is set to

zero. The optimal power of PV system is calculated by

the LPNN. As well as WT system, predicted power of PV

is the upper limit that the PV system can generate in the

optimal process, which relies on the intensity of SR in the

location for monitoring. The lower limit of PV generation

equals zero.

Figure 13 reveals the optimal output power of battery

bank. From the figure, we can easily find that the BS

system work all the time for RGRs is not enough to serve

the VDs. The maximum and minimum output powers of

battery bank are the upper limit and lower limit that the BS

system can output or input in the optimal process, which

are calculated by the algorithm in ‘‘Appendix.’’

Figure 14 shows the optimal power of DGs, MTs and

FCs, and Fig. 15 describes the total cost of DGs, MTs and

FCs in real time, including fuel costs, operation and

maintenance cost. Predicted and zero power of RGRs

generated by WTs and PVs and the output power limit of

DG, MT, FC and BS are treated as constant values in

LPNN optimal process.

In Fig. 12, the optimal output power of RGRs is con-

sistent with the predicted power. It shows that power of

RGRs is maximized. When comparing Fig. 14 with

Fig. 15, we can find that the best choice to reduce cost is to

shut down the DGs and make use of output power from the

MTs, FCs and RGRs when the load demand is low. When

the load is very high, we can start up the DGs to satisfy the

load. What should be mentioned is that the figures above

are all plotted with the interval of 15 min.

7.2 Comparison with the PSO approach

The problem (12) can be summarized as (50):

Fig. 11 Real and predicted load demand power
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minimize f xð Þ
subject to h xð Þ ¼ 0

g xð Þ� 0
ð50Þ

By the penalty function method, we define the penalty

function:

F xð Þ ¼ f xð Þ þ C1

Xk

i¼1

h2
i xð Þ þ C2

Xm

j¼1

1

gj xð Þ ð51Þ

Fig. 12 Predicted and optimal renewable sources

Fig. 13 Optimal lead-acid battery power

Fig. 14 Optimal power product from DG, FC and MT

Fig. 15 Optimal time-vary cost

Table 2 The comparison between the LPNN proposed and the PSO approach

Total Cost $ð Þ
LPNN 14.43 1.46 0.97 16.61 333.47 648.80 274.64 8.54 5.05

PSO 19.1l 1.96 2.16 19.21 399.90 715.27 476.84 8.54 17.92

LTP

LPNN/PSO 1.33 1.34 2.22 1.16 1.19 1.10 1.74 1.00 3.54

Ax� bk k
PSO 1.43E-06 1.45E-06 1.61E-11 1.43E-06 4.61E-04 4.62E-04 4.62E-04 1.09E-05 1.29E-06
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where C1;C2 are the penalty factor. In this way, this

problem converts to be an unconstrained problem.

The position of the ith particle defined as LiG ¼

LiG;1; L
i
G;2; . . .; L

i
G;n

� �T

is generated randomly and Vi ¼

Vi;1;Vi;2; . . .;Vi;n

� �T
is represented as the velocity of the ith

particle, where n is the dimension of each particle. Define

Lipb ¼ Lipb;1; . . .; L
i
pb;n

� �
as the best personal position cor-

responding to the best fitness value for the ith particle, and

Lgb ¼ Lgb;1; . . .; Lgb;n

� �
as the global best position of the

group. The movement of the ith particle is adjusted by [40]

Vi;j t þ 1ð Þ ¼ wVi;j tð Þ þ c1r1 Lipb � LiG;j tð Þ
� �

þ c2r2 Lgb � LiG;j tð Þ
� �

ð52Þ

LiG;j t þ 1ð Þ ¼ LiG;j tð Þ þ Li;j t þ 1ð Þ ð53Þ

where w is inertial weight, c1; c2 are acceleration constants,

r1; r2 are random numbers in the range [0,1].

We choose the 10th; 20th; . . .; 90th intervals to compare

the results of the proposed LPNN method and the basic

PSO approach. The comparison of them is shown in

Table 3 and Fig. 16. We define the ratio of the cost

obtained by LPNN and PSO as LTP; it is easy to find that

the optimal cost of LPNN is all less than the cost of PSO

approach. Considering that PSO is weak to deal with

constrained problem, we also record the index Ax� bk k to

indicate that the comparison is reliable. From Fig. 16, we

can easily find the LPNN is better than the PSO method.

8 Conclusion

In this paper, Lagrange programming neural network,

based on Lagrangian multiplier method, is introduced to

optimize economic dispatch and minimize the objective

function proposed in a hybrid microgrid. The LPNN is

Lyapunov stable, and the stationary point of Lagrange

function is proved asymptotically stable. Simulation

shows that LPNN approach can determine the optimal

solutions of power generation resources and energy stor-

age system. Also, RBF neural network is utilized to

achieve day-ahead prediction of renewable resources and

load demand.
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with the work submitted.Fig. 16 Comparison between the LPNN and PSO

Table 3 Cost coefficients and

proportional constants for

generation system

i Cost coefficients and proportional constant

ai bi ci am;i bm;i cm;i KOM�i

DG 0.4333 0.2333 0.0074 80.9019 - 0.3812 0.0063 0.01258

FC 3 0.1 0.0003 28.8249 - 0.7902 0.0064 0.00419

MT 5 0.3 0.0004 50.3808 - 0.3907 0.0061 0.00587
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Fig. 17 Flowchart of algorithm for the battery system
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Appendix

To obtain the upper and lower restriction of battery bank,

the algorithm in the following is given. SCB can take three

values corresponding to three different operating modes.

Readers can refer to [18] for detail method to calculate the

value of restriction in Fig. 17).
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